

CIRCL
Computer Incident
Response Center
Luxembourg

GCVE.eu

What's Happening Around Vulnerability-Lookup

EPSS SIG - Collaboration between Vulnerability-Lookup, VLAI, and GCVE

<https://vulnerability-lookup.org>

team@circl.lu

January 16, 2026

CIRCL <https://www.circl.lu>

Contents

1. Why we build these tools
2. Vulnerability-Lookup
 1. Who is behind Vulnerability-Lookup?
 2. Origin and Challenges we aim to address
 3. Where the Data Comes From
3. AI strategy
 1. Mission
 2. Open Data Approach
 3. AI Datasets
 4. Generation workflow
4. Global CVE Allocation System

Why we build these tools

Why We Build These Tools

- Enabling better vulnerability metrics & research
- A shared challenge: improving **vulnerability risk metrics & prioritization** requires **real, reproducible, openly accessible data**.
- Metrics like **CVSS, EPSS, vendor scores, exploitability signals** only improve when results can be **validated across organizations**.

Our Approach: An Open, End-to-End Research Stack

- **Vulnerability-Lookup:** normalization, enrichment, deduplication; research-friendly **APIs & dumps**.
- **GCVE & DB.GCVE.EU:** decentralized identifiers & interoperable publishing at scale.¹
- **VLAI:** extraction, structuring, and comparison of textual & contextual signals.
- **Sightings:** real-world exposure & observation data as **time-series signals**.
- **Crowdsourced + open data pipelines:** broader coverage, reduced single-source bias.

¹<https://gcve.eu>

What This Enables for the Community

- **Transparent datasets** for benchmarking scoring models & prioritization strategies.
- **Faster iteration** on new metrics, and honest evaluation of existing ones.
- **Reproducible research:** same inputs → comparable outputs → verifiable conclusions.

Vulnerability-Lookup

Who is behind Vulnerability-Lookup?

Vulnerability-Lookup² is an **Open Source** project led by **CIRCL**.

It is co-funded by **CIRCL** and the **European Union³**.

Used by many organisations including CSIRTs and ENISA (EUVD).

²<https://www.vulnerability-lookup.org>

³<https://github.com/ngsoti>

What is Vulnerability-Lookup?

- A unified place to **search**, **triage**, and **track** software and product vulnerabilities from different sources.
- Brings together vulnerability information, correlation of identifiers (e.g., CVE, GHSA, OSV), references, timelines, and risk signals in one view.
- Designed for **CSIRTs**, **SOCs**, **vulnerability managers**, and **developers** in mind.
- **Web UI first** with strong **API** and automation options.
- Support a complete **CVD process management**⁴ along with the ability to fork vulnerability information⁵. Distributed GNA directory.

⁴CNA Program, GCVE GNA Publication

⁵Implemented before the GNA initiative!

Origin of Vulnerability-Lookup

- cve-search⁶ is an open-source tool initially developed in late 2012, focusing on maintaining a **local** CVE database.
- cve-search is widely used as an **internal** tool.
- The design and scalability of cve-search are limited. Our operational public instance has reached a hard limit of 20,000 queries per second.
- Vulnerability sources have **diversified**, and the **NVD CVE is no longer the sole source** of vulnerability information.

⁶<https://github.com/cve-search/cve-search>

Initial Challenges

- **Volume of data:** Handling a substantial dataset and heavy network traffic, currently over **1,802,699** security advisories and more than **183,000** sightings collected in approximately a year ⁷.
- **Flexibility:** Balancing ongoing development with legacy issues while designing a future-proof architecture. It's complex and yes, sometimes chaotic⁸.
- **Robustness:** Validating data even when external entities don't comply with their own JSON schemas. It's not always pretty.
- **Fast lookup:** Rapidly correlating identifiers across **diverse sources**, including unpublished advisories.

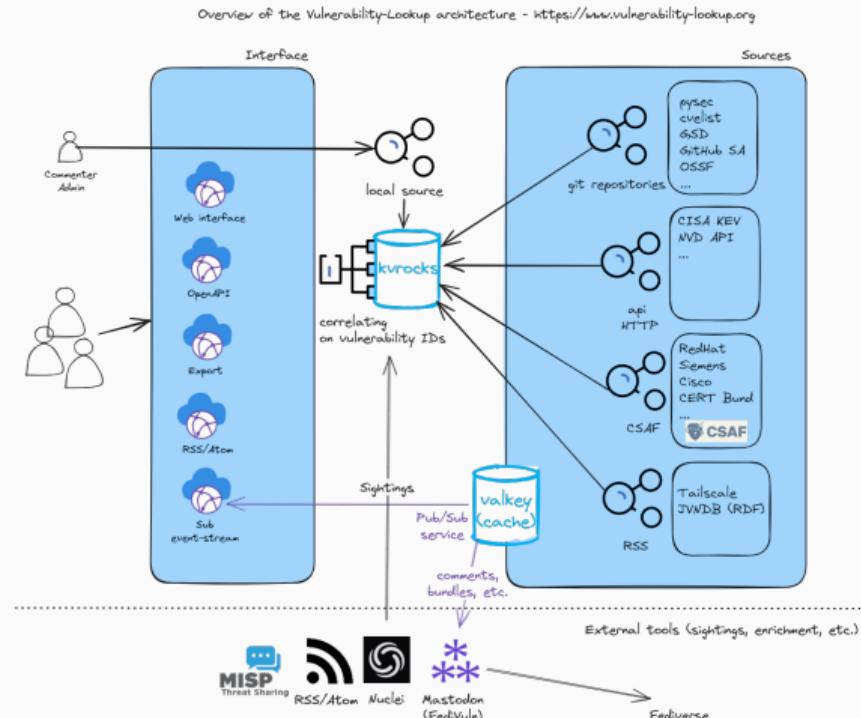
⁷The first sighting on Exploit-DB dates back 26 years.

⁸We enjoy challenges, especially when they lead to practical solutions.

Ongoing Challenges and Development

- **CVD process:** Developing an open-source tool to support Coordinated Vulnerability Disclosure.⁹
- **Vulnerability numbering:** Enabling a distributed approach via the Global CVE Allocation System.¹⁰
- **Scoring vulnerabilities:** Aggregating large volumes of observations from diverse advisory types to improve scoring. Automatic **weighting** of sightings by source or type (e.g., exploited, PoC available) and **detection of type** independent of the source.
- **Data quality:** Transforming messy data into clean datasets suitable for model training and analysis.

⁹Aligned with NIS 2 and the Cyber Resilience Act.


¹⁰<https://gcve.eu>

Current Sources

- **CVE Program** [Git](#)
- **NIST NVD CVE** [API 2.0](#)
- **Fraunhofer FKIE CVE** [Git](#)
- **GCVE** [API](#)
GNA already publishing
- **GitHub Advisory Database** [Git](#)
- **Python Advisory Database** [Git](#)
- **Cloud Security Alliance - GSD** [Git](#)
- **VARIoT** [API](#)
- **CSAF 2.0 (HTTP CSAF)**
CERT-Bund, Cisco, Siemens, Red Hat, Suse, OpenSuse, Microsoft, NCSC-NL, CISA, ABB, etc.
- **Japan - JVN DB** [HTTP](#)
- **China - CNVD** [HTTP](#)
- **CERT-FR** [HTTP](#)
- **Tailscale** [RSS](#)
- **CISA KEV** [HTTP](#)
- **EU KEV** [HTTP](#)
- **Growing...**

Vulnerability-Lookup High-Level Architecture

- Collects and aggregates vulnerability data.
- Preserves data integrity (never alters the original content).
- Harmonizes data using kvrocks.
- Correlates information across multiple sources (CVE, PySec, etc.).
- Provides both APIs and a Web interface.
- Supports advanced queries and filtering.

AI strategy

- CIRCL AI approach¹¹: we enhance existing solutions rather than replacing functional systems with NLP/ML/LLM solutions.
- We actively participate in collaborative research and development efforts, such as the EU-funded AIPITCH (AI-Powered Innovative Toolkit for Cybersecurity Hubs) project¹²
- Improve operational outcomes in threat intelligence and incident response
- AI-powered enrichment of vulnerability descriptions (e.g., severity, CWE, CPE information)
- VLAi: A RoBERTa-Based Model for Automated Vulnerability Severity Classification¹³

¹¹<https://circl.lu/pub/ai-strategy>

¹²<https://www.science.nask.pl/en/research-areas/projects/12456>

¹³<https://arxiv.org/abs/2507.03607>

- **Open Data Initiative:** CIRCL's commitment to making data openly available¹⁴.
- Consistent open approach applied across all our projects.
- Regularly updated JSON dumps¹⁵ and “AI” datasets¹⁶.
- Public, unauthenticated API access for Vulnerability-Lookup.

¹⁴<https://data.public.lu/en/organizations/computer-incident-response-center-luxembourg>

¹⁵<https://vulnerability.circl.lu/dumps/>

¹⁶<https://huggingface.co/CIRCL/datasets>

- Our experience with large datasets is not recent (Passive DNS¹⁷, BGP ranking¹⁸, MISP¹⁹, AIL²⁰, Lookyloo²¹, etc.). And we learned from our past mistakes.
- Turn messy data into structured, actionable insights.
- Link related vulnerabilities via enrichment, correlation, and crawling.
- Support the process with **VulnTrain**²²: a tool to build AI Datasets and Models for vulnerability management.

¹⁷<https://www.circl.lu/services/passive-dns/>

¹⁸<https://github.com/D4-project/BGP-Ranking>

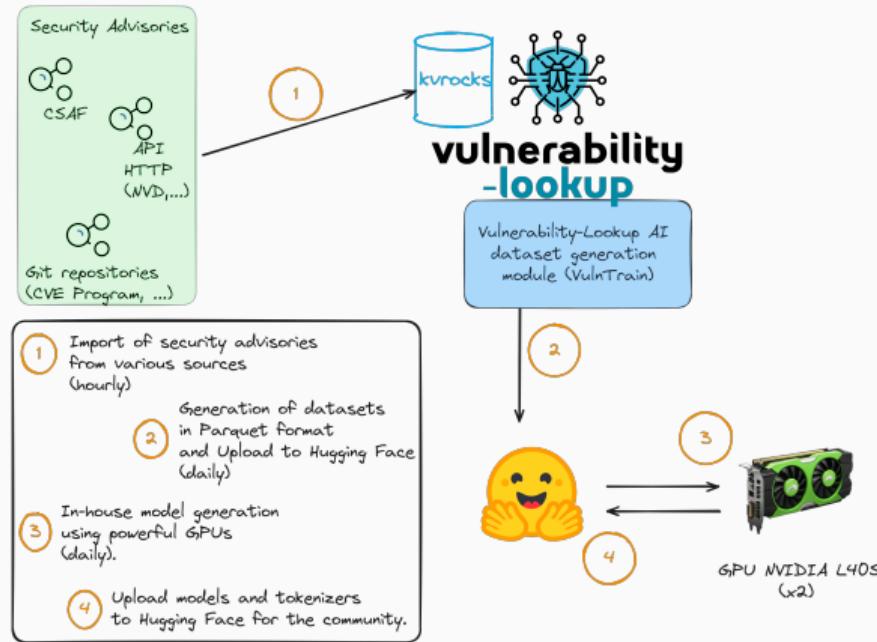
¹⁹<https://github.com/MISP>

²⁰<https://github.com/ail-project>

²¹<https://github.com/Lookyloo>

²²<https://github.com/vulnerability-lookup/VulnTrain>

Current datasets


Dataset	Size (rows)	Generation Time	Features
vulnerability-scores ²³	655,258	10m45s	Descriptions (en), CVSS, CPE
vulnerability-CNVD ²⁴	126,127	1m32s	Descriptions (cn), CVSS
vulnerability-cwe-patch ²⁵	39,260	350m	Descriptions (en), CWE, patches (commit id + url + full diff)

²³<https://huggingface.co/datasets/CIRCL/vulnerability-scores>

²⁴<https://huggingface.co/datasets/CIRCL/Vulnerability-CNVD>

²⁵<https://huggingface.co/datasets/CIRCL/vulnerability-cwe-patch>

Model generation workflow with VulnTrain

- local training
- models are publicly shared
- regular update

Current Models

Model	Size	Epochs	Accuracy	Training Time
Severity classification ²⁶	125M params	5	0.8289	3.41h
Severity classification (CNVD) ²⁷	102M params	5	0.7817	34.741m
CWE guessing ²⁸	125M params	36-40	0.7127	60m

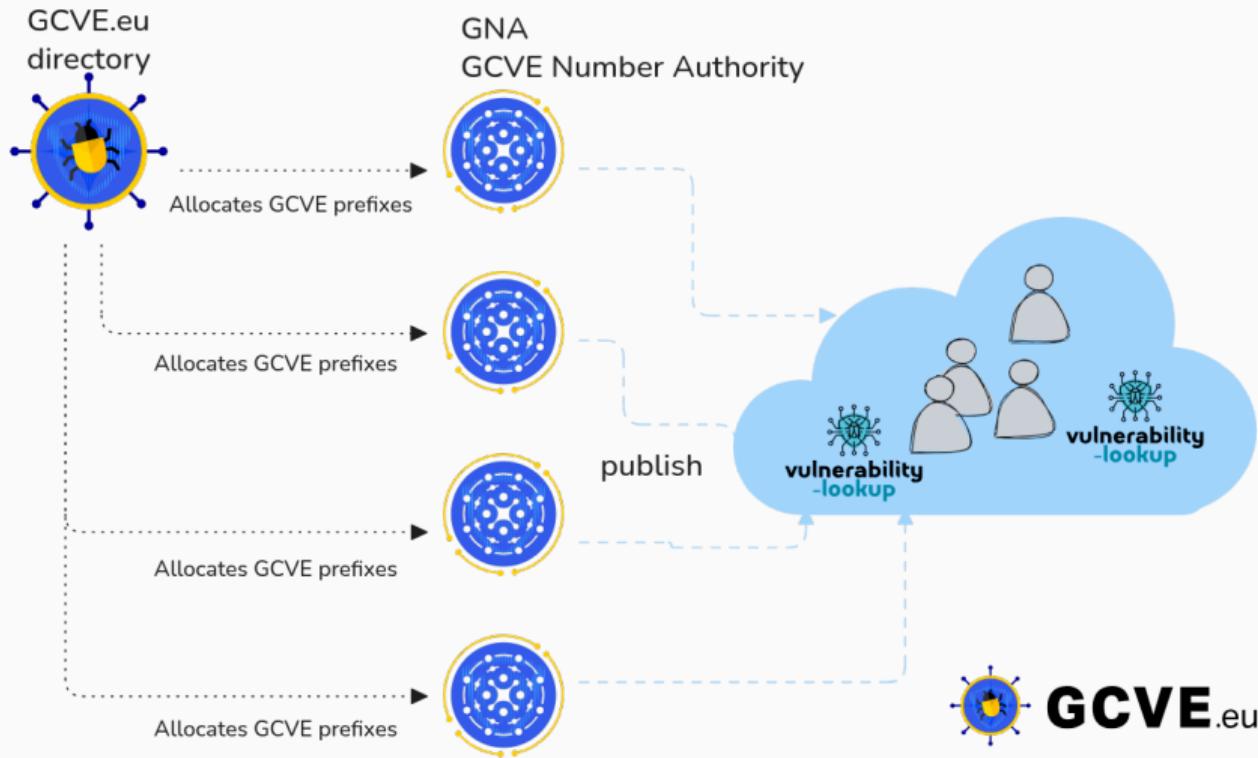
With 4 × NVIDIA L40S.

GPU Efficiency in VLAI Model Training:

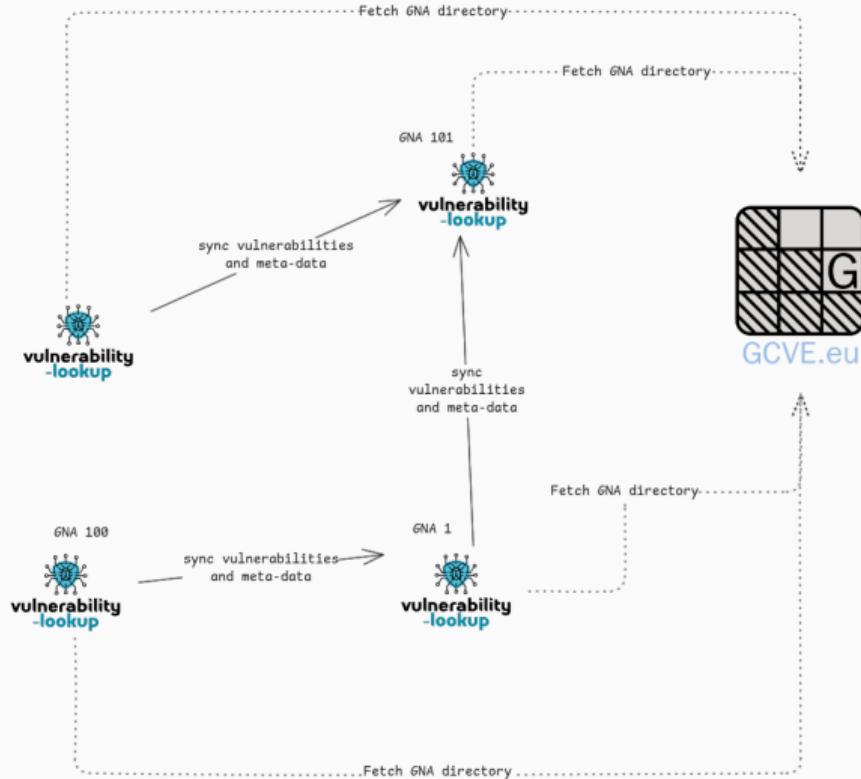
<https://www.vulnerability-lookup.org/2025/12/12/gpu-efficiency-in-vlai-model-training>

²⁶<https://huggingface.co/CIRCL/vulnerability-severity-classification-roberta-base>

²⁷<https://huggingface.co/CIRCL/vulnerability-severity-classification-chinese-macbert-base>


²⁸<https://huggingface.co/CIRCL/cwe-parent-vulnerability-classification-roberta-base>

Global CVE Allocation System



- The primary role of GCVE is to provide **globally unique identifiers** to GCVE Numbering Authorities (GNAs).
- **GNAs operate autonomously**, with full control over how they assign and manage identifiers.
- **GCVE publishes Best Current Practices (BCPs)** on directory management, Coordinated Vulnerability Disclosure (CVD), and publication protocols.
- GCVE maintains and publishes the **official directory of all GNAs**, including their publication endpoints.

Overview

A Distributed Network

Who Can Be a GNA?

- You are an existing CNA recognized by the CVE Program.
- You are not a CNA, but **meet at least one of the following conditions**²⁹:
 - You are a registered CSIRT or CERT listed on FIRST.org, part of the EU CSIRTs Network, or a member of TF-CSIRT.
 - You are a software, hardware, or service provider that regularly discloses vulnerabilities affecting your own products or services, and you have an official CPE vendor name assigned.
 - You have a public vulnerability disclosure policy and maintain a publicly accessible source for newly disclosed vulnerabilities.

²⁹<https://gcve.eu/about/#eligibility-and-process-to-obtain-a-gna-id>

Benefits of Becoming a GNA

- **Fast, straightforward onboarding:** as soon as the eligibility criteria are met, registration is quick and simple.
- **Flexible identifier usage:** you may publish new CVE entries immediately and apply your assigned prefix to both current and historical identifiers.
- **Autonomy over publication:** each GNA determines for itself what constitutes a vulnerability and what information is made public.
- **Incremental adoption of BCPs:** additional GCVE Best Current Practices can be adopted over time; implementing every BCP is encouraged but not mandatory.

Best Current Practices (BCPs)

ID	Title	Status	Ver.	Published
GCVE-BCP-01	Signature Verification of the Directory File	PUB	1.1	25 Apr 2025
GCVE-BCP-02	Practical Guide to Vulnerability Handling and Disclosure	PUB	1.3	09 Dec 2025
GCVE-BCP-03	Decentralized Publication Standard	Draft	1.0	10 Jun 2025
GCVE-BCP-04	Recommendations and Best Practices for ID Allocation	PUB	1.3	02 Oct 2025
GCVE-BCP-05	GCVE Vulnerability Format (Updated CVE Record Format)	Draft	1.6	02 Jan 2026
GCVE-BCP-07	Known Exploited Vulnerability - KEV Assertion Format	Draft	1.0	03 Jan 2026

Draft and public documents are always open for public review.

Closing

Ongoing Development

- Deeper analysis of the content and context surrounding sightings and exploited vulnerabilities³⁰.
- Insights generation based on patches dataset.
- CPE Guessing across sources.
- Full-text search capabilities across all sources.
- Synchronization between multiple Vulnerability-Lookup instances allow **real-time sightings accross instances**.

The project is evolving rapidly — we always welcome feedback³¹ and feature suggestions!

³⁰<https://github.com/vulnerability-lookup/TARDISsight>

³¹<https://discourse.ossbase.org/c/gcve/14> -
<https://discourse.ossbase.org/c/vulnerability-lookup/6>

References

- <https://www.vulnerability-lookup.org>
- <https://vulnerability.circl.lu> <https://db.gcve.eu/>
- <https://github.com/vulnerability-lookup/vulnerability-lookup>
- <https://social.circl.lu/@circl>

Thank you for your attention

- Issues, new sources of advisories or ideas:
<https://github.com/vulnerability-lookup/vulnerability-lookup>
- For support and questions, contact: info@circl.lu